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By Donald G. Eide
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SUMMARY

The equation of motion is derived for the angular rotation about the pitch
axls of a space vehicle that is thrusting while partly filled with a liquid
fuel that constitutes a large percentage of its mass. The forces due to thrust
and rotation are of a magnitude equal to the capillary forces of the fluid and
much greater than the Coriolis force. These forces are idealized to lie paral-
lel to a longitudinal axis of the fluid tank. Changes in the angular rotation
are generated by an impulsive torque applied to the vehicle. The fluid is con-
sidered to be irrotational, incompressible, inviscid, and contained in a rec-
tangular tank.

The resulting angular rotation of the vehicle and fluld system consists of
the sum of a constant or average rotation and a cosine variation with time due
to the motion of the fluid within the tank. The frequency of the variation 1is
the slosh frequency of the free surface of the fluid. The slosh frequency is
presented as a function of the inertial loading due to thrust, rotation, the
amount of fluid in the tank, and the fluid-surface tension and density. The
1limit of thrust reversal for stability of the free-surface motion is established
from the slosh frequency. The ability to minimize the sloshing effect by proper
adjustment of the impulse magnitude and time of application is discussed and an
example is given. The response per unit impulse of a vehicle is presented for
different loading conditions and fuel avallable for the change in angular
velocity at the time of impulse, the average angular rate, the amplitude of the
slosh variation, and the ratio of slosh variation to average angular rate.

INTRODUCTION

Vehicles operating in space can require maneuvers such as maintaining a
fixed attitude or rendezvous, where associated inertial forces on the fluid are
equal in magnitude to the capillary forces. As these space vehicles become
larger and more complex, it 1s expected that they will be carrying a large per-
centage of their total mass in liquid fuel. Thus, as the liquid fuel is used,
a free surface 1s created that 1s put in motion by the changes in the



gravitational field due to changes in thrust level or angular rotation in an
orientation maneuver. The motion of the fluid would appear to cause a varia-
tion in the motion of the vehicle at a time when it 1s desired that the motion
be as constant as possible. Some work has been done on the problem of fuel
sloshing in an environment where the inertial forces are much greater than the
capillary forces of the fluid. (For example, see ref. 1.) In addition, in the
area where the inertial forces are equal to the capillary forces, the frequency
of surface oscillation or slosh frequency has been determined. (See refs. 2
to 5.) However, none of the aforementioned work has included the velocity of
the fluid and the resulting effect on the motion of the vehicle in a space
environment.

This report is a preliminary analytical investigation of the problem of
pitch-motion variation of a vehicle due to the motion of the liquid fuel rela-
tive to the tank, under low inertial forces created by thrust and angular rota-
tation. The fuel is considered to be irrotational, incompressible, inviscid,
and contained in a rectangular tank. As a first step in the analysis, a
linearized expression for the sloshing frequency of a fluld free surface 1s
derived. The frequency is obtained by assuming small amplitude displacements
about a flat equilibrium free surface, an average angular rotation, and no vari-
ation in the amount of the fluid durling thrust. The frequency 1s shown to be a
function of the acceleration loading, surface tension, and centrifugal force due
to angular rotation about the pitch axis of a tank containing a specified amount
of a given fluld. The equation of motion for the angular velocity of the
vehicle and fluid is then derived for motion started by an lmpulsive torque.

In general, the angular motion consists of a constant angular rotation with a
superimposed cosine variation with time. The possiblility of minimizing the
disturbance due to sloshing by selecting the proper time of impulse application
as a function of the slosh freguency is investigated. Inasmuch as the time
required for such a maneuver can be excessive for large tanks and low frequen-
cles, the use of this maneuver 1s limited.

In this report, the margin for stable motion of the liquid free surface is
shown. The varistion of the slosh frequency 1s presented as a function of the
ratios of fluld mass to tank mass for various initial tank capaclties and dif-
ferent loading conditions. The response from rest to a unit impulsive torque
is shown for a particular vehicle containing various amounts of liquid oxygen,
in different-size tanks, and under different loading conditions.

SYMBOLS
Ay, By, Cyps Dy constants in general solution for Vo@
a tank-carried acceleration field due to thrust, ft/sec2
dys ey coefficients of Ey in equation (10), ft2/sec
Ey time variation of @ for odd integer in equation (8)
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Fy time variation of @ for even integer in equation (8)

Fy body force on fluid particle
f constant defined by equation (21), slugs
. tank fineness ratio, L/R
G constant defined by equation after equation (15), ft2
H total angular momentum, Hy + Hyp, slug-ft</sec
Hy tank angular momentum, slug—ftg/sec
Hr fluid angular momentum, slug—ftg/sec
h height of equilibrium fluid free surface above tank base, ft
h = h/R
I total system inertia about y-axis, slug-ft®
Ir moment of inertia of fluid about y-axis, slug-ft2
I moment of 1lnertia of tank about y-axis, slug—ftg
i, J,k unit vectors directed along x-, y-, and z-axes, respectively
K mean curvature of free surface, LY JL-, £l
2\R; Ro
L tank length, ft
me fluid mass, slugs
me inertial tank mass, It/%g, slugs
N an integer in infinite summation for ¢
Ny impulsive torque, ft-1lb
Npg Bond number, pRga/T
N centrifuge number RBhﬂfy
ce g ’ pr X T

n unit normal to rigld boundary



P fluid pressure, lb/sq ft

Py impulsive pressure, lb/sq ft

Py vapor pressure, lb/sq ft

Q constant defined by equation after equation (22)

q velocity relative to inertial frame, ft/sec

qt, fluid velocity relative to tank, ft/sec

R tank half-width, ft

R1,Ro principal radii of curvature, ft

r distance from origin to point in fluid (x2 + y2 + 22)1/2, ft
S fluid free surface

s wetted surface of riglid tank wall

t time

ty time of removal of impulse

v tank velocity relative to inertial-axis system @ x T, ft/sec
W thickness of tank, ft

XY,z inertial-axis system

X,¥,2 tank-fixed axis system

a ratio of residual fluid mass to inertial tank mass
Qpy ratio of initial full-tank fluid mass to tank mass

B ratio of fluid to tank inertia, %(1 + 1.2 4 £ h o+ r_@)
v4 impulse, slug-fte/sec

A incremental change

1 = n(x,t) small displacement from equilibrium surface

=
]

- %(frg + f.h + _132)



) x )

) - O)

coefficient defined by equation (27b)
coefficient defined by equation (27a)
fluid density, slugs/cu ft

Nth mode fluid slosh frequency, radians/sec

fluid surface tension, 1b/ft
velocity potential function, ftg/sec

phase angle in system motion, arc tan ?

body force potential
tank angular motion, radians/sec
average tank angular motion defined by equation (26), radians/sec

slosh coefficient defined by equation (27), radians/sec

vector operator, R -1 T+ SR
X Z

Sy

vector cross product

vector dot product

Subscripts:

:

b
1
o]

W

relative to fixed coordinate system

relative to moving coordinate system

relative to flrst mode
relative to conditions at time of last impulse

at wall x = -r

Dots over symbols indicate derivatives with respect to time.

Arrows over symbols indicate vectors.

A prime denotes conditions prior to last impulse.



THEORY

Derivation of General Bernoulli Equation

As seen in figure 1, the cross section of a rectangular tank with length
L, half-width R, thickness W, and containing a fixed amount of an inviscid,
incompressible fluld rotates slowly about an lnertial axis fixed in the base of
the tank. The origin of this axis coincides with the center of gravity of the
vehicle so that the inertial-axis system (X,Y,Z) and a tank-fixed coordinate
system (x,y,z) is formed, with the Y,y-axis being the axis of rotation. While
the tank rotates about this pitch axis, the tank and fluid are subjected to an
acceleration field directed along the positive z-axis. This situation cor-
responds to a spacecraft thrusting while changing its spatial orientation.
Therefore, because of this longitudinal and centrifugal loading, the liquid is
positioned in the upper portion of the tank.

The equation of motion of an inviscid, incompressible fluid particle rela-
tive to the inertial system 1is

%g =§§ +8xa’=§’b_%§. (1)
F M
where the velocity of the particle is
q = E; + 7

and where

a; velocity vector of the fluid particle relative to tank
i? veloclty vector of tank

P fluld pressure

p fluid density
i% body force

I relative to the fixed coordinates

F

' relative to the moving coordinates

M

The body forces are assumed to be derivable from a scalar potential as
follows:

—_
Fp = -V



Substituting for @ from equation (1) and teking the time derivative
gives

§F=%(q’t+8x?>M+8x<a’t+3x?)
—.a:?i+—5-(u_)’><r)+( -V)(“’+<T>’x?)+wx +_>x(_’x—))
- = T T qy + o ® X T

Since the fluld motion relative to the tank is considered irrotational,
—
CANER
by = VP

where the velocity potential ¢ is a function of the spatial coordinates and
time. Also,

an’t=o

and
Vg = 0

Therefore, by substitution,

dq
dt

) L e v 2P B3 @XxTD) - (W VBT

F ot 2

By expanding the last two terms and substituting the acceleration into the gen-
eral equation of motion, the following pressure equation is obtained:

V(—%%+Lév2+n+£-r%2>+m&"-?)=-<i>’x?+3<3)xv¢ (2)

P 2

The problem is now restricted to the case where the motion is considered
to be in the X,Z plane and about the Y-axis. The following terms are assumed
to be negligible to allow a solution of ¢ by the separation of variables and
to simplify the analysis:

(1) v .
(II) Tx W

(TIT) Xx 7



Assumption (I) implies that 'V¢| is very small. The angular rate is
also considered small, but has an order of magnitude greater than IV¢,.

Since |@x W| 1is of the order of |uwVf| and if the tank dimensions
are large, then assumption (II) implies that

=

|z >> [ 9|

Physically, this relationship means that the velocity of the particle considered
as fixed to the tank is much greater than the velocity of the particle relative

to the tank and that the centrifugal force on the particle 1s much greater than

the Corlolis force.

>> Iaﬁ¢|

or

The implication from assumption (ITI) is that the rotationsl acceleration
is negligible and that there are no external forces acting on the particle
during the period to be analyzed. This assumption will also be used later in
obtaining an expression for the free-surface motion. With these assumptions
and relstionships and by representing the body force in terms of the magnitude
of the carried vehicle acceleration field "a" due to thrust along the longi-
tudinal z-axis so that 0 = -az, equation (2) is integrated to yleld the general
Bernoulll pressure equation:

¥, P
ot 2

P
+ 8z = =
82 =9

The term containing w® represents the velocity squared of the particle. By

assuming that the fluld is at a distance from the tank base that is greater
than the tank half-width, the term can be linearized as follows:

reu? 720
=
2 2

This approximation improves as the fineness ratio increases, Therefore, the
pressure equation may be written as

op P
g"‘ +8.Z-—'5 (29')

where the constant of integration is set equal to zero without loss of gen-
erality (ref. 2).



Rigid-Wall Boundary Conditions

In order to determine the function ¢ in spatial coordinates, it is only
necessary to prescribe conditions along the boundaries. The function ¢ is
then determined completely throughout the fluid (ref. 3).

The following condition for the velocity of the particle evaluated at and
normal to the rigid walls must also hold:

v¢.ﬁ)=0

which means for the tank under consideration

N
Bl L,
OX | x=+R

(3)
Bl o
oz 2L, )

Equations (3) indicate that the only direction the particle can move at the
wall is parallel to the wall. The remaining boundary is along the free surface.
The free surface consists of small displacements about an equilibrium
configuration.

Free-Surface Conditions

In references 5 and 6 the contact angle, which is the intersection between
the liquid, gas, and rigld tank wall, is shown to have a large influence on the
equilibrium free surface with a flat surface obtained for a lower range of
loading for a contact angle of 90°, 1In addition, the contact angle does not
change with the loading. Since the pressure due to the centrifugal force has
been idealized to be parallel to the ® vector, the free surface is assumed to
be flat throughout the range of loading. The free surface under these condi-
tions may be simply defined as

S=Z-E1+n(x,t)]=0 (%)

where h is the height of the equilibrium free surface and n(x,t) is a small
perturbation about the equilibrium surface. The height of the equilibrium free
surface is considered constant throughout the maneuvering.

With the fluid particles remaining at the surface, the boundary condition
for the free surface is (ref. k)

DS _
Dt
where DS/Dt is the total time derivative of S. By substituting 51 = -V¢

0



éé-(éééfé)-(aﬁ‘:é,@)_(@éﬁ)=o

3t \oz oz) \oy dy/ \ox ox

Substituting for S from equation (4) yields the following equation for the
free-surface boundary condition with the velocity component in the x-direction
considered negligible (ref. 3):

aﬂ(x,t) _ ég
-, (5)

Hereinafter, the displacement from the equilibrium surface n(x,t) 1is desig-
nated 7.

In order to obtain the effect of the free-surface boundary condition on
the motion of the particle, equation (2a) 1s utilized. Although the equilibrium
free surface is assumed to be unaffected by the surface tension, the motion of
the fluid about the equilibrium position is affected. Subtracting the constant
vapor pressure of the fluid from both sides of equation (2a) leads to:

3, z2w? K, By ©)
Jt 2 PP
where
IE_P"PV
P P
and where
Py vapor pressure
T surface tension
1\/ 1 1
K mean curvature of free surface, (= |[s— + o
2/\Ry Rp
Ry,Ro principal radii of curvature

Equation (6) is evaluated along the free surface as defined by equa-
tion (4). The exception to this evaluation is that the function § 1is eval-
uated along the equilibrium surface

z =h
This exception is due to (see ref. T)

#(q) ~ O
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By substituting the value for z from equation (4) into equation (6) and
neglecting the square of the displacement from the equilibrium surface since it
is small, the equation for the perturbed free surface 1s

2 2
ggﬁx +2?hn)w Fa(n e ) - B (68)

Teking the partial derivative of equation (6a) with respect to time and sub-
stituting the relationship for 7 from equation (5) ylelds

3% 3 3K
S;g - (nwe + a)sg = % vy (7)

where the initial assumption ® ~ 0 has been maintained.

The mean curvature for a two-dimensional surface is defined, at an instant
of time, as

Bgz/ax2

@]

By substituting the value for 2z from equation (4) and neglecting the square
of the small displacement term, the partial derivative with respect to time of
the mean curvature reduces to

K =

X ¥n D¢

— 3

3t 3x%t xSz

Substituting this value for OK/Jt into equation (7) yields the following
equation for the free-surface boundary condition:

(@1 28 o (7a)
32 3 P 3x%

Space-Coordinate Solution of Velocity Potential Function

Equation (6) presents the derived equation of motion for the free surface
of the fluid. Equations (7a) and (3) give the boundary conditions along the
free surface and rigid walls, respectively. The velocity potential function ¢
must satisfy these equations. Since the fluid is considered to be incompress-
ible and inviscid and the particle motion irrotational, the velocity potential
function must also satisfy Laplace's equation throughout the fluid:

11



V2¢=O

Utilizing separation of variables and applying the boundary condlitions along the
rigid tank walls (egs. (3)) ylelds a general solution for ¢:

[+ +]
Nnx Nix Nz Nz
= Ay cos —= + sin 22X\ (cy sinh X2 4 osh =2
¢ Z(N s > * By 2R><N R DN052R>
N=1

Thus, the solution of @ depends upon whether N 1s odd or even; that is,

¢ = Z EN sin ISZ[}. cosh M + FN cos &t_}i cosh F_‘J(_(L—_Z) (8)
2R 2R 2R 2R
N=0dd N=Even

The constants Ey and Fy are functions of time and are the result of a com-

bination of the original constants in the general expression for @. Once ¢
is solved in terms of space coordinates, the time dependency still remains to
be determined. In order to determine the nature of the time dependent function
in the expression for @, equation (8) is substituted into equation (T7a). This
substitution ylelds the following relationship for the Nth mode (when N is

odd):
Ey + oy By = O

An identical equation 1n terms of Fy can be written for N 1s even. Thus,

the free surface has the characterlstic of harmonic motion with the character-
istic slosh frequency for the Nth mode:

1/2

2
- —2 7(Nrt)~Nn Nt

The @ appearing in the expression for the frequency is considered as a con-
stant or averasge rotational rate throughout the perlod of free rotation. The
determination of @ 1Is presented in a subsequent section of this paper.

The expression for the Nth slosh frequency is generalized by two loading
parameters, the centrifuge number N,, and the Bond number Np,, to yleld

( ) 1/2
~ (NI{) _T_ E’E Nn fr - 1_1_
oy = [Nce + Npo + v 2o 33 tanh — (9a)
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where

fy fineness ratio, L/R
h =2
- R

The centrifuge number is hereby defined as

pRigse
N = —
ce T
and the Bond number is
N N pRga
Bo = o

The expression for oy reveals that the free-surface motion becomes unstable
when
(Nx)®

'NBo > Nce +

The solution for the stable harmonic motion is

Ey = dy cos opt + ey sin oyt (10)

A parallel solution can be obtained for Fy.

Initial Conditiomns

In order to define the initial conditions (t = 0), an impulsive torque is
considered to be applied to the tank and fluid system to reorient the vehicle.
The magnitude of the force creating the Impulsive torque is considered to be
large so that the centrifugal force due to the rotation and the linear thrusting
of the vehicle are neglected during the time of the impulsive torque. (See
ref. 8.) As shown in reference 7 the fluid in the tank resists the impulsive
torque through a system of pressures acting along the tank wall about the base
point. In the present analysis, the time integral of pressure is called the
impulsive pressure, and the time integral of the impulsive torque is called the
impulse.l

lFor correlation of terms used herein with those in reference 7, the
impulsive torque is the couple in the term "force wrench." The time integral
of the impulsive torque is the impulse wrench.
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It is also shown in reference T that when the impulse

tl N
tl —>to t

overcomes the impulsive pressures acting on the walls, there is a net change in
momentum of the tank and fluid system. The torque is idealized so that it
occurs only in the x-direction and applied therefore to the tank wall x = -R,
with the component over the top of the tank considered negligible. Even though
the torque cannot be represented by a scalar force potentlal because

Vxﬁi;éo

it is maintalned as an approximation of the physical situation. Therefore, for
the net change 1n momentum

y - fL T x H)(Pi)dz = M (12)
h
where
n unit vector normal to and outward from fluid
Py impulsive pressure along wall X = -R
Fa\s change in angular momentum of system

The sudden motion of the walls due to the impulsive torque is considered
as a serles of pilstons applied to the fluid surface x = -R with a force pro-
portional to & and 2z in a manner analogous to the procedure in reference 3.
The totsl integral of these plstons over the wall is then equivalent to the
moment acting on the fluid.

The total rate of change across the boundary x = -R may be approximated
by an average or constant force on the boundary. However, since the magnitude
of the impulse distribution cannot really be determined, the total effect on
the fluid motion over the entire wall must be used. Thus, a correlation is
obtained between the total impulsive torque and the resisting moment due to the
system of impulsive pressures. When dealing in terms of the total flux across
the boundary, there 1s no difference in the effect regardless of how the pres-
sure 1s assumed to be distributed. The pressure at a point along the wall due
to the impulsive torque is

by = 2pRzad

For the time of the impulsive-torque application, the pressure equation
can be written as

1k



Integrating this equation over the small interval of time of the impulsive-
torque application, with the value of Py much greater than the static pres-

sure exlsting prior to impulse, gives
¢"¢o=2RZA‘D=Pi (13)

where ¢o is the velocity potential function just prior to the impulsive

torque. In order to find the cumulative effect of the impulse, the moments due
t0 the impulsive pressures are integrated over the wetted tank surface x = -R
with the lower limit of integration tsken at the undisturbed surface:

f Tx TP - #) ds = f T x m(2Rz Aw)ds (1k)

] Xx=-R s
t=0
where

ds = dy dz

. By substituting into equation (14) the value for ¢ from equation (8) and
integrating, the following expression for the amplitude d; 1s obtained at

t = 0 when only the first mode (N = 1) 1is considered:

dy = -G Aw + E;° (15)
where
- :rz(L3 - h3)
6REosh£@;_lll+z§_sinhﬂ_<}_-_ll_>_ 1]
2R oR oR

The value of El' can be determined by the fluid conditions of veloeity and

surface displacement in the cycle prior to the impulse. Now, there are two
unknowns, /Aw in equation (15) and ey for N =1 in equation (10). How-

ever, ej 1s readlily determined from the displacement of the free surface at

t = O by assuming that there is no change in spatial coordinates during the
impulsive torque. The free-surface displacement is
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where 7' is the displacement existing at the initial time of impulsive=
=to

torque application. The relationship in equation (5) is utilized to obtain the

velue of n at t = O from the previous potential function, which is assumed

to have the same spatial boundary and loading conditions:

t B¢
N = - —2 dt
t:o az t=to
z=h
n(él'sin 0y 'ty - ep'cos ol'to> X (L - h)
= sin — sinh ——m
2Rg- 2R 2R
1
Solving for ej gives
%
e = - EITGdl'sin ol'to - el'COS ol‘to> (16)

The velocity potential function may therefore be written in terms of ZAw and
the conditions at the time previous to the last impulse as follows:

o
g = B-G Mo + El')cos oyt - —Ui'(dl‘sin gy 'ty - e, 'cos cl'to)sin clt] sin % cosh —-——ﬂ(Lal; 2) (17)

In order to obtain Aw in terms of the known impulse 7, equation (12) is
utilized. The change in angular momentum of the system 1s

- — -
A = Iy Ao + AHp

where Iy 1s the vehicle yaw moment of inertis considered as being that of the
tank and Aﬁ} is the change in angular momentum of the fluid, that is,

N Ww/2 pR pL N

AHf:pf f f rXG&DXI—V(¢-¢O)dZdXdy (18)
-W/2 Y-R Yh

where W 1is the thickness of the tank.

The total fluld momentum is obtained by integrating equation (18). The
first term in the integrand is integrated:

w/2 AR pL m o
P f f ?xﬂx?dzdxdy:i(R2+L2+hL+h)m (19)
-W/2 YR Yn 3
vhere mg is the total fluid mass and is equal to 2pR(L - h)W.
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The second term in the integrand of equation (18) shows the change in
momentum relative to the tank created by the pressure applied at the wall

X = =R:

o [l #xolp - )

Substituting for d; from equation (15)

8pR%W L-h h
dz dx dy = - 2 t(L-h) ,mh oy (L -h) _E."
z dx dy - cosh bz Ty sl M (a1 - By') (20)

£=0 n

Ay = (Ip + £6)ow

where If 1is the moment of inertia of fluid about the y-axis with the fluid

) Te (.2 2 2
considered as a rigid body, that is, Ig = T(R + L% +hL +h ), and
2
f=89Rw2coshM+E£sinhM_g (21)
2 2R 2R 2R
Substituting these relationships and equation (13) into equation (12) yields
Ao = L (22)
ItQ
where
n(f. ~-h 3nh n{f.-h
5 cosh (fr -)+ "sinh—(f-—‘-)-s

2 2

2
Q=1+ +4pu
x{f. - h f. - h
cosh-ﬁ—re——)+f2£sinhf—(%'-z-l

T
B_It 3(1+fr +frg+g)

mg

a = ——

mt

Iy

e = =

R2

T %‘(fre +fh + .1_1_2)

17



By substituting equation (22) into equation (17), the velocity potential
function is found as a function of the impulse:

G) 1 Ol ( 1) ] L] 1 )
= - ~— + E cos o,t - =—=(d;'sin o'ty - €, 'cos o, 't,)ein o t{ sin —= cosh
4 ( ) 1 1T 5\ 1 ~" 10 1 2R

General Equation of Motion

After removal of the ilmpulsive torque, the tank fluid system rotates
without any additional external forces so that the system angular momentum is
constant. The angular momentum after the impulse 1s therefore

H=TIo - f(dl cos ot + e sin clt)
where d; and e; are obtained from equations (15) and (16) and
I=It+If

When evaluated at t = O, the angular momentum is found in terms of the motion
to be

H = In, - fd,

where w, 1s the angular velocity at the end of the impulse. Substituting for
w4+ fFrom equation (22) gives

I
H=="2 + In, - fd
TR 0T

Equating this formule to the angular momentum at any time +t after the impulse
and solving for the angular motion of the system leads to

fda fe
o=+ - _fl(l - cos o t) + _El sin ot (24)

The angular motion consists of a constant EL which is used to compute the
slosh frequency in equation (9), and a superimposed cosine variation with time
that is due to sloshing:

w=0o-~¢t cos o3t - v sin oqt = ® - Wg cos(olt - W) (25)

18



where

and

¥ = arc tan —

Also, the slosh coefficient is

1/2
wg = (§2 + ve) (27)
where '
L N (¢ 2N
£ = - I = T(ItQ - E (27a)
and
o}
v = %[éiTCil’sin oy 'ty - e, 'cos cl'toi] (21o)

In a system started from rest where EF1'=0 and v = 0, equation (26)

can be written as

$=—2—+§
I.Q

and equations (27) can be written as

Wg = £ cos clt
Therefore, equation (25) becomes

4

w=—"—+¢t(1 - cos oyt (28)
I.Q g( 1 )

DISCUSSION AND RESUITS

From the expression for the slosh frequency given by equation (9a), a
stability margin for the free surface 1s revealed. For example, if the thrust
of the vehicle is reversed in direction and is of sufficient magnitude so that

19



2
o
~Npo & Nee + I=

then the motion of the free surface 1is unstable. Therefore, for a large tank
a8 small thrust reversal can create instability. When the Bond number ts in
this region, the net force on the liquid would force it toward the base of the
tank and cause a perturbation of the vehicle motion. This result suggests a
limit on the magnitude of retrograde thrust on the vehicle. The limit may be
exceeded to some degree if the force of impact and resulting perturbation are
within a tolerance for acceptable control.

The slosh frequency during a cycle for a given fluid is found to be a
function of the height of the flat equilibrium free surface of the liquid,
centrifuge number, Bond number, and tank capacity. In figure 2, the product of

slosh frequency o¢; and tank radius RB/2 for liquid oxygen with

% =L4.1 x lO'u ft;/éecz is plotted against the product of fineness ratio fy

and the ratio of residual fuel mass ratio a to initial full-tank fuel mass

ratio Qpy for variocus centrifuge numbers and Bond numbers. As the value of
the product f,. % decreases below approximately 1.5 (corresponding to a

%t
fluid depth of 1.5 tank half-widths), the value of the slosh-frequency param-

eter ulRB/e decreases rapidly for a given tank. The rate of decresse is

greater for a high Bond number at the same centrifuge number. The decrease is
attributable to the increased effect of the tank top on the wave motion as h

Increases as the fuel is consumed. The values of the frequency parameter show
that for a tank with dlameter of 2 to 10 feet, a full period can take up to

20 minutes.

For maneuvers requiring short time intervals between impulse applications,
the vehicle motion would be similar to a rigid body response with a slight
variation due to surface displacement:

7
w = T;a + Wy = vclt

However, after repeated impulses, the coeffiecient v can increase to the point
where 1t may become uncontrollable.

In order to minimize the sloshing, each of the components in equation (27)
must be minimized separately. Examination of equations (27a) and (27b) shows
that exact knowledge 1s required of surface velocities and displacements in
order to adjust correctly the last Impulse for zero sloshing.

The requirements can be simplified by applying the impulses at a time cor-
responding to zero surface displacement. As an illustration, consider a system



started in motion from rest by an impulse with another impulse to be applied
at some later time in order to achieve some unperturbed angular rate. The com-
ponents in equation (27) after the second impulse are therefore

S '
£ = < ItQ(7 + 7, cos o} to)

v = £ G ¥y sin o. 't
= T T Ty T~ o
I o-ll I‘tQ o] 1

One way to minimize the coefficients ¢ and v is to divide the required
impulses into two equal parts with the same sign and applied at a time cor-
responding to

Another procedure is to apply two impulses, equal and opposite in sign, at a
time corresponding to

However, such impulses call for great periods of time. During this time it
could be expected that the viscosity, which has been neglected in this analysis,
would damp out the sloshing effect.

An alternative to these aforementioned procedures for minimizing the
sloshing is to use a two-impulse system with the initial impulse greater than
required for a desired angular rate. At some later time a second impulse is
applied in retrograde fashion relative to the initial impulse and with a lesser
megnitude. The second impulse must be adjusted in magnitude and applied at a
time

arc cos -L
t = 0
O'l'

so that the final average angular rate is the desired rate and the coefficlent
€ 1is zero. However, a sloshing coefficient remains due to the displacement of
the free surface at the time of the last impulse. Therefore, limitations are
imposed on this system to achieve a reduction in the sloshing coefficient by
using an initial overshoot maneuver. The first restriction is the following
relationship between the desired angular rate and the initial angular rate:

Eo(l - cos cl'to) = oy (29)

where Eh is the desired average angular rate of the tank.
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In order to have a reduced sloshing through this initial overshoot maneu-
ver, the following restriction on the initial angular rate mast hold

2
It
_ 2 "Bo * u\ 2 ‘
Bo™ > - , , (39)
Sf g3 /Eos o to(l - cos 0y to)

Thus, for times close after the initial impulse or for times close tO a quarter
cycle, the qualification on w, becomes impractical due to the fact that w,
would have to approach infinity. In figure 3 an example of this restriction is
plotted for a tank with a fineness ratio of 2 and a radius of i feet and being
one-half full of liquid oxygen. If 50 falls above the hatched area for a

given angle of o0y't, and satisfies the condition given by equation (29), a

reduction in sloshing can be obtained.

The response to an impulse is now investigated for a system initially at
rest. A specific example of the angular response of a fluld tank system started
from rest by an impulsive torque is presented in figure 4. The tank is con-
sidered to be one-half full of liquid oxygen and to have a pitching moment of

inertia of 720 slug-feetg, a half-width of 4 feet, a fineness _ratio of 2, and
an imposed acceleration field "a" due to thrust of 5.15 X 10-2 ft/sec”. The
impulse is of sufficient magnitude to produce an average angular velocity w

of 0.0025 radian/sec, a slosh coefficient wg of 0.001k4 radian/sec, and a

Ny of 0.0011 radian/sec which is the initial angular velocity of the system
since the tank is started from rest. These responses are normalized with
respect to the impulse and are plotted against the ratio « (fluid mass to tank
mass) for different tank fineness ratios fy and different values of the ratio
ey (full-tank fluid mass to tank inertial mass). The vehicle considered has

a pitching moment of inertia of 720 slug—feetg. The curves in all the responses
are not carried out to the full-tank values because the theory calls for a free
surface at all times, which cannot be achieved with a full tank.

In figure 5 the change in angular velocity per unit impulse as calculated
from equation (22) is shown. For fineness ratios of 3 and 4 the response
remains approximately constant as o decreases until values of about 0.2 are
reached, at which time there is a rapid increase converging to the rigid-body
response of the vehicle. Smaller values of fineness ratio produce a larger
response for all tanks and a more gradual increase with decreasing amounts of
available fuel. For tanks with lesser capacities, the responses are greater at
the same value of a. Thus, for a tank with a fineness ratio of 1, the
increase in response with decreasing o resembles an exponential curve; whereas,
for a fineness ratio of 4, the response remains approximately constant until
the previously mentioned value of a of about 0.2 is reached.

In figure 6 the average angular velocity is shown as computed from equa-
tion (26). The response is similar to the change in angular velocity shown in
figure 5, except for the addition of the slosh coefficient. The convergence to
a rigid-body response as the tank empties is more gradual for tanks with small
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capaclities. For any tank capacity, the smaller fineness ratios have a more
gradual convergence to & rigid-body response.

The slosh coefficient per unit impulse is shown in figure T as computed
from equation (27). For values of oapy of 1.25 and 1.00, the maximum values
of ws/y remain approximately the same, with the peak values occurring at
smaller values of a for larger fineness ratios. In general, the values for
a tank capacity of 1.25 and 1.00 increase for decreasing fineness ratios. Also,
as the tank capacities decrease, the general range of values becomes greater.
However, as the tank empties there is a crossover point where the values for
the larger fineness ratios become larger than the values for the smaller fine-
ness ratios. As the tank capacities decrease, the crossover polnt occurs at
increasingly larger values of o until, as shown in figure 7(d), with
Qpy = 0.50 the values of ws/y for a fineness ratio of 2 are greater over the

entire range than for a fineness ratio of 1. It should be noted that the
results are not applicable when the fluid level nears the top of the tank
because the pressure over the top of the tank has been assumed to be negligible
in the discussion of initial conditions.

In figure 8, the slosh coefficient per average angular velocity w%ﬂﬁ is

plotted against a. This figure shows that the larger the fineness ratio and
the larger the tank capacity, the greater is the ratio of slosh coefficient to
angular velocity. The ratio decreases slowly as the fluid level in the tank
decreases until values of a of sbout 0.25ap, are reached. At this time, the

decrease becomes faster and converges to the condition of an empty tank and
rigid-body response.

CONCLUSIONS

The equation of motion has been derived for the two-dimensional angular
rotation of a vehicle contalning a large amount of an irrotational, incompress-
ible, and inviscid liquid fuel with a flat equilibrium free surface contained
in a rectangular tank. The derivation lncludes a determination of a velocity
potential function and frequency of free-surface oscillation generated by an
impulsive torque. Analysis of these equations reveals the following
conclusions:

1. The free-surface motion of a given liquid 1s a stable oscillation until
a negative inertial loading factor due to a thrust reversal exceeds the sum of

a centrifugal-force loading factor and %?. Under these conditions this free-

surface motion diverges. For large tanks, only small thrust reversals are
required to create this divergence.

2. The frequency of the free-surface motion for a given liquld in a given-
size tank under constant inertial loading remains approximately constant until
the depth of the fluid in the tank reaches approximately 1.5 tank half-widths.
At this time there is & rapid convergence to zero.
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3. The vehicle angular motion can be described as a constant average
angular velocity with a superimposed cosine variation with time whose amplitude
or slosh coefficient is a function of the amount of fluid in the tank, the
magnitude of the applied impulse, and the time of its application in the cycle
previous to the applied impulse. The change in the angular velocity during the
time of the impulsive torque is a function of the last impulse, with the
resulting angular veloclity being the initial angular velocity of the new cycle.

4, The effect of sloshing on the angular motion of the vehicle can be
minimized by utilizing two equal impulses with the second impulse applied out
of phase with the sloshing so as to cancel the angular momentum of the fluid.
A disedvantage to this method is that large periods of time are required between
impulses. Another method is to utilize two impulses that are not equal in mag-
nitude or sign and applied at shorter intervals of time. This method can pos-
sibly reduce the sloshing effect to within tolerable limits.

5. The change in angular velocity and average angular velocity due to an
impulse are greater for small fineness ratios, with a gradual increase in the
response as the tank empties until there is a small amount of fluid remaining
in the tank. Below these amounts of fluid there is a rapid convergence to the
rigid-body response of the vehicle.

6. In general, the values of the slosh coefficient are greater for smaller
fineness ratios for given amounts of remalning fluid. These values also
increase with decreasing values of the ratio of initial fuel mass to vehicle
mass. As the tank empties, maximum values of slosh coefficient are reached
that are about the same for all fineness ratios, with these maximum values
occurring at larger values of remaining fluid for smaller values of fineness
ratio. Below these amounts of remaining fluid, the slosh coefficient decreases
toward zero with the rate of decrease greater for larger values of fineness
ratio.

7. The ratio of slosh variation to average angular velocity is greater for
large fineness ratios and for larger initlial tank capacities. As the tank
empties, there is a gradual decrease in this ratio; however, when a low amount
of fluid remains, there 1s a rapid convergence to zero.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., March 5, 1964.
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Figure l.- Tank and fluid configuration.

Arrows indicate positive directions.
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